Global Well-Posedness of the Three-Dimensional Primitive Equations with Only Horizontal Viscosity and Diffusion
نویسندگان
چکیده
منابع مشابه
GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEAT DIFFUSION By
The three–dimensional incompressible viscous Boussinesq equations, under the assumption of hydrostatic balance, govern the large scale dynamics of atmospheric and oceanic motion, and are commonly called the primitive equations. To overcome the turbulence mixing a partial vertical diffusion is usually added to the temperature advection (or density stratification) equation. In this paper we prove...
متن کاملGlobal Well–posedness of the Three-dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics
In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.
متن کاملA ‘horizontal’ hyper-diffusion three-dimensional thermocline planetary geostrophic model: well-posedness and long-time behaviour
1 Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0323, USA 2 Department of Mathematics and Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3875, USA and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel 3 Department of Mathematics, University of Southern Califo...
متن کاملGlobal well-posedness for the primitive equations with less regular initial data
Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du système des équations primitives pour des données moins régulières. On interpole les résultats d’existence globale à données Ḣ 1 2 petites fournis par le théorème de FujitaKato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est suffisamment petit, et pour des données plus régulière...
متن کاملLocal and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d ≥ 2 and in all of space for d ≥ 3, the uniqueness being a result ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2015
ISSN: 0010-3640
DOI: 10.1002/cpa.21576